DIRECTIONS: Print and complete! Hand it in inside your 2 pocket folder along with previous units!!

Section #1: Vocabulary (words and/or diagrams) Define each:

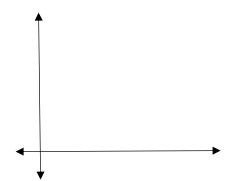
Define each.	
Roots	Focus
Identity	Directrix
Maximum	Vertex (turning point)
Minimum	Locus

Section #2: Formulas/Equations/Rules

Standard form of quadratic equation	Quadratic formula
Vertex form of quadratic equation	Center-radius form for equation of a circle
Combination of standard and vertex form $(x-h)^2 = 4p(y-k)$	Square Root Property
Distance formula	Perfect square trinomial identities

Section #3: Key methods and concepts

- Types of factoring (GCF, DOPS, Trinomials including with a>1, Factor by Grouping) 1) $3x^3 - 24x$ 2) $81 - 16x^4$ 3) $5x^2 - 17x + 6$ 4) $2x^3 - 3x^2 - 6x + 9$
- Show the process for changing standard form to center-radius form of a circle:
 5) y² + 2x + x² 24y + 120 = 0


6) Solve algebraically, $0 < x^2 + 2x - 8$ and graph the set on a number line and write the solution in set builder notation

7) Five ways to solve a quadratic equation: (#B,C,D-put in simplest radical form) a. Solve by factoring: $3x^2 - 24 = 14x$ b. Solve by using quadratic formula: $2x^2 + 39 = 18x$

c. Solve by completing the square: $4x^2 + 8x - 1 = 0$

d. Solve by using square root property $4(x+1)^2 - 8 = 0$

e. Solve by graphing: Please show a sketch, window and labeled axes. An object is launched at 19.6 meters per second (m/s) from a 58.8-meter tall platform. The equation for the object's height s at time t seconds after launch is $s(t) = -4.9t^2 + 19.6t + 58.8$, where s is in meters. When does the object strike the ground?

8) Put the equation into VERTEX FORM:

9) $y = -4x^2 - 16x + 5$

Vertex = _____

Method 1: $y - directrix = \sqrt{(x - x_{focus})^2 + (y - y_{focus})^2}$	Method 2: $(x-h)^2 = 4p(y-k)$ where p = distance from vertex to
-	focus. If parabola facing up, p is "+", facing down, p is "-"
a) Write equation in standard form.	b) Write equation in vertex form.

9) Determine the equation of a parabola given the focus and directrix: y = 1 Focus (3,5)

Answers: 1) $3x(x^2 - 8)$ 2) $(9 + 4x^2)(3 + 2x)(3 - 2x)$ 3) (5x - 2)(x - 3) 4) $(2x - 3)(x^2 - 3)$ 5) $(x + 1)^2 + (y - 12)^2 = 25$ 6) $\{x < -4orx > 2\}$ 7) a) $x = -\frac{4}{3}$, 6 b) $\frac{9}{2} \pm \frac{\sqrt{3}}{2}$ c) $-1 \pm \frac{\sqrt{5}}{2}$ d) $-1 \pm \sqrt{2}$ e) 6 secs 8)(-2, 21) $y = -4(x + 2)^2 + 21$ 9) a) $y = \frac{1}{8}x^2 - \frac{3}{4}x + \frac{33}{8}$ b) $y = \frac{1}{8}(x - 3)^2 + 3$